
Review of the
C Programming Language for

Principles of Operating Systems
Prof. James L. Frankel

Harvard University

Version of 3:55 PM ET 27-Sep-2022
Copyright © 2022, 2019, 2018, 2016, 2015 James L. Frankel. All rights reserved.

Reference Manual for the Language

• Recommended textbook
• C: A Reference Manual, Fifth Edition by Harbison & Steele

• Has all details of the language

• This is a wonderful reference for the C Programming Language

2

Concepts of Language Design and Usage

• This presentation contains many concepts of computer language
design and usage

• These concepts are very important in understanding computer
languages and also how compilers work

• Feeling at ease with many of these concepts is important to be able
to successfully implement a compiler

• This presentation basically follows C89, but may contain some
language features that are not present in C89

3

Language: Lexical Elements (§2)

• Character Set

• Comments

• Tokens

• Operators and Separators

• Identifiers

• Keywords

• Constants

4

Language: Operators

• Operators perform operations
• For example, the “=” (simple assignment) operator stores the value obtained

by evaluating the right-hand-side operand into the location designated by the
left-hand-side operand

• Operators produce results
• For example, the result of the “=” (simple assignment) operator is the value

obtained by evaluating the right-hand-side operand after being converted to
the type of the left-hand-side operand

• Observation: both unary prefix ++ and unary postfix ++ will increment
their operand; the difference is the value of the result of the operator

5

Unary, Binary, and Ternary Operators

• Operators may take one, two, or three operands

• Unary operators take one operand

• Binary operators take two operands

• The ternary operator takes three operands

6

Prefix, Infix, and Postfix Operators

• Operators that precede their operand are prefix operators

• Operators that appear between their operands are infix operators

• Operators that follow their operand are postfix operators

7

Expression Evaluation

• When an expression is evaluated, the top-level operator is executed

• Nested operators are evaluated as determined by the top-level
operator in the expression
• Most operators evaluate all their operands

• Some operators evaluate some of their operands as determined by other
operands
• Take a look at the “short-circuit” operators: && and ||

• Also, look at the ternary conditional operator

8

Unary Prefix Operators

• Increment and decrement ++ --

• Size sizeof
• Yes, sizeof is an operator!
• When are parentheses needed?
• What is the value of sizeof array when array is declared as int array[20] and int’s are four

bytes in length?

• Bitwise not ~

• Logical not !

• Arithmetic negation and plus - +

• Address of &

• Indirection *

• Casting (type-name)
• Because of the matching parentheses, this is defined as a unary operator

9

Unary Postfix Operators

• Subscripting a[k]
• Because of the matching brackets, this is defined as a unary operator

• Function Call f(…)
• Because of the matching parentheses, this is defined as a unary operator

• Direct Selection .

• Indirect Selection ->

• Increment and decrement ++ --

10

Binary Infix Operators

• Multiplicative * / %

• Additive + -

• Left and Right Shift << >>

• Relational < > <= >=

• Equality/Inequality == !=

• Bitwise & ^ |

• Logical && ||

• Assignment = += -= *= /= %= <<= >>= &= ^= |=

• Sequential Evaluation ,

11

Logical Operands and Results

• Operators that evaluate operands for logical values accept 0 to signify
false or any non-zero value to signify true
• These operators are !, &&, ||, and the first operand of ? :

• Operators that produce a logical result always result in either 0 (for
false) or 1 (for true)
• These operators are !, &&, ||, <, >, <=, >=, ==, !=

• No value other than 0 or 1 will be the result of these operators

• Following the “as if” rule, if the result of these operators is not used as a
numeric value, but is used directly in another way (say, as the condition in an
if statement), then the true or false result may result in conditional branching
but not in a 0 or 1 value

12

Details of the Binary Infix Logical Operators

• The && and || operators always evaluate their left-hand operand, but
only evaluate their right-hand operand when needed to determine
the result of the operator; this is sometimes referred to as short-
circuit behavior

• To be clear, these operators are not allowed to evaluate their right-
hand operands when not needed to determine the result of the
operator

• That is, the && operator will evaluate its right-hand operand only
when its left-hand operand evaluates to true (non-zero)

• The || operator will evaluate its right-hand operand only when its
left-hand operand evaluates to false (zero)

13

Ternary Infix Operator

• Conditional operator ? :

• Example
• a ? b : c
• If a is true, b is evaluated and returned as the result of the conditional

operator
• If a is false, c is evaluated and returned as the result of the conditional

operator

• To be clear, this operator is not allowed to evaluate the operand that
is not required in the description above

14

Associativity (§7.2.1)

• Operators of degree greater than one (i.e., with more than one operand) may be
either left- or right-associative

• Associativity determines how operators of the same precedence level are
grouped when parentheses are not present

• In the C Programming Language, all binary operators are left-associative except
for the assignment operators (includes both simple and compound assignment
operators)

• In the C Programming Language, the ternary operator (the conditional operator)
is right-associative

• See Table 7-3 on page 205 in Harbison & Steele

• Of course, it is possible to specify associativity by using parentheses

15

Associativity Examples

• Left-associativity examples
• a – b – c is equivalent to ((a – b) – c)

• Right-associativity examples
• a = b = c is equivalent to (a = (b = c))

• a ? b : c ? d : e is equivalent to (a ? b : (c ? d : e))

16

Precedence(§7.2.1)

• Precedence determines how operators of different precedence levels
are grouped when parentheses are not present

• For example, because multiplicative operators have higher
precedence than additive operators and because they both have
higher precedence than assignment operators (and because additive
operators are left-associative),
• a = b + c * d + e

is evaluated as if fully parenthesized as follows
(a = ((b + (c * d)) + e))

• See Table 7-3 on page 205 in Harbison & Steele

17

Overloading (§4.2.4)

• Overloading is the principle that the same symbol (including operators and
identifiers) may have more than one meaning

• For example, the – operator is used both as a unary prefix operator and
also as a binary infix operator

• Overloading may also be determined by type
• For example, the – operator is used both for integral subtraction and for floating-

point subtraction. These operations are very different even though they have similar
mathematical principles that serve as their inspiration

• Overloading may also be determined by context
• void as a pointer target type means pointer to anything
• void as the return value in a function declaration means no return value
• void as the sole type in a cast means discard the value of the expression

18

Computer Language Operators are Not the
Same as Mathematical Operators
• Keep in mind that operators in computer languages are not the same

as the similar operator in mathematics

• Several reasons for dissimilarity
• In mathematics, the number of integral values is infinite – that is, the range of

positive and negate integers is unlimited
• Computers’ integers are constrained in range

• In mathematics, real numbers are used to represent any real value – that is,
they have unlimited range and precision (accuracy to any number of decimal
places)
• Computers’ floating-point numbers are constrained in both range and precision and, in

addition because of their internal representation, computers may not be able exactly
represent a real value

19

Type

• Each constant, identifier, sub-expression, and expression has a type

• A type describes the kind of values that are able to be represented

• Taxonomy of types
• Scalar types

• Arithmetic types
• Integral types: char, short, int, long

• Floating-point types: float, double, long double

• Pointer types

• Aggregate types
• Array types
• Structure types

• Union types
• Function types
• Void types

• The language has a means to declare the type of an identifier – this is a declaration
• The type description in a declaration is called a declarator

• The language has rules to describe how types are used

20

Use of Types

• Some operators may accept operands of a limited subset of types

• The function of an operator may be determined by the type(s) of the
operands
• For example, binary addition is very different for integral values and for

floating-point values because they have very different internal
representations

• The type of the result of an operator may be determined by the
type(s) of the operands

21

Layout of Multidimensional Arrays in Memory

• In C, multidimensional arrays are stored in row-major order (i.e., adjacent
elements in memory differ by one in their last subscript)

• Thus, a 2-by-3 array of int (two rows, three columns) declared as

int matrix[2][3];

• would be laid out in memory as

matrix[0][0]
matrix[0][1]
matrix[0][2]
matrix[1][0]
matrix[1][1]
matrix[1][2]

22

Language: Declarations (§4)

• Restriction on Where Declarations Can Appear

• Storage Class and Function Specifiers
• Storage class: auto, extern, register, static, typedef

• Type Specifiers and Qualifiers
• Qualifiers: const, volatile, restrict (C99)

• Declarators

• Initializers

• External Names

23

Scope (§4.2.1)

• Identifiers are declared in nested scopes

• Scopes exist in different levels
• File scope (Top-level identifiers)

• From declaration point to the end of the program file

• Procedure scope (Formal parameters in function definitions)
• From declaration point to end of the function body

• Block scope (Local identifiers)
• From declaration point in block to end of the block

• Entire procedure body (Statement labels)
• Forward reference to a statement label is allowed

• Source file (Preprocessor macros)
• From #define through end of source file or until the first #undef that cancels the definition

24

Order of Declarations and Statements

• In C89, within any block, all declarations must appear before all
statements

• As stated in Compound Statements (§8.4), in C99, declarations and
statements may be intermixed
• In previous versions of C, declarations must precede statements

25

Scope Example

int global;

int main(int argc, char *argv[]) {
int local;
{

int nested_local;
…
if(error_occurred) {
goto symbol_length_exceeded;

}
…

}
symbol_length_exceeded:
exit(EXIT_FAILURE);

}

26

Overloading Classes for Names (§4.2.4)

• Preprocessor macro names

• Statement labels

• Structure, union, and enumeration tags
• Always follow struct, union, or enum

• Component names (“members”)
• Associated with each structure or union

• Use always follows either . or ->

• Other names
• Includes variables, functions, typedef names, and enumeration constants

27

Visibility (§4.2.2)

• A declaration of an identifier is visible if the use of that identifier will
be bound to that declaration

• Declarations may be hidden by successive declarations

• Example:

int i;
int main(void) {

int i;
i = 17;

}

28

Extent (or Lifetime or Storage Duration)
(§4.2.7)
• In C, procedures and variables occupy storage (memory) during some or all

of the time a program is executing
• Procedures have code in memory

• Variables have location(s) in memory where their value(s) are stored

• Static storage duration denotes that memory is allocated at or before the
program begins execution and remains allocated until program termination

• Local storage duration denotes that memory is allocated at entry to a
procedure or block and deallocated at exit from that procedure or block

• Dynamic storage duration denotes that memory is allocated and freed
explicitly by the user under program control (e.g., by using malloc and free)

29

Static and Local Storage Duration

• Procedures have static storage duration

• Global (top-level) variables have static storage duration

• Some variables in blocks may have static storage duration
• These are declared with the static storage class specifier

• Formal parameters have local storage duration

• Some variables in blocks may have local storage duration
• Automatic variables have local storage duration
• These either do not have the static storage class specifier or they have the auto class

specifier

• Notes: when the static storage class specifier is applied to a procedure, it means
that the function name is not externally visible (i.e., not visible outside the
current program file)

30

Storage Class Specifiers (§4.3)

• auto

• extern

• register

• static

• typedef

• Defaults
• Top-level declarations default to extern

• Function declarations within blocks default to extern

• Non-function declarations within blocks default to auto

31

Type Qualifiers (§4.4)

• const
• A const-qualified lvalue cannot be used to modify an object

• volatile
• An object accessed through a volatile-qualified lvalue can have its value

accessed through means not under the compiler’s/run-time’s control

• restrict
• Let’s the compiler know that the object accessed through a restrict-qualified

lvalue does not currently have any aliases through which the object can be
accessed in the compiler

32

Position of Type Qualifiers

• const int i; /* means i is a const int */
/* i cannot be modified */
/* a value can be assigned to i by using an initializer */

• const int *p1; /* means p1 is a pointer to a const int */
/* p1 can be modified, but the int pointed to by p1

cannot be modified */

• int *const p2; /* means p2 is a const pointer to an int */
/* p2 cannot be modified, but the int pointed to by p2

can be modified */

• const int *const p3; /* means p3 is a const pointer to a const int */
/* neither p3 nor the int pointed to by p3 can be

modified */

33

Declaration vs. Definition

• A declaration of an identifier determines the type of the identifier

• A definition of an identifier sets aside storage for that identifier

• If a procedure/function is being declared or defined…
• A declaration determines the number and type of parameters and the type of

the return value

• A definition includes the body (i.e., implementation or code) of the function

34

Language: Types (§5)

• Integer Types

• Floating-Point Types

• Pointer Types

• Array Types

• Enumerated Types

• Structure Types

• Union Types

• Function Types

• The Void Type

• Typedef Names

• Many of the types listed above were explained in the preceding slide labeled “Type”

35

Side Effects

• For a function, a side effect is any modification to a program’s state
that is exhibited other than through the function’s return value
• Includes: input or output operations, modification of global variables,

modification of data structures

36

Logical Values

• When used as a logical operand,
• A true value is represented by any non-zero value

• A false value is represented by a zero value

• When a logical type is produced as a result of an operator,
• A true value is one (1)

• A false value is zero (0)

37

Language: Expressions (§7)

• Objects, Lvalues, and Designators

• Expressions and Precedence

• Primary Expressions

• Postfix Expressions

• Unary Expressions

• Binary Operator Expressions

• Logical Operator Expressions

• Conditional Expressions

• Assignment Expressions

• Sequential Expressions

• Constant Expressions
• Can be evaluated at compile-time (rather than run-time)

• See preceding slides beginning with the slide labeled “Language: Operators”

38

Sequence Points (§4.4.5, 7.12.1)

• All previous side effects must have taken place before reaching a sequence point

• No subsequent side effects may have occurred when reaching a sequence point

• Sequence points exist:
• At the end of a full expression

• An initializer
• An expression statement
• The expression in a return statement
• The control expressions in a conditional, iterative, or switch statement (incl. each expr. in a for

statement)
• After the first operand of &&, ||, ?:, or comma operator
• After evaluation of arguments and function expr. in a function call
• At the end of a full declarator

• In Standard C, if a single object is modified more than once between sequence
points, the result is undefined

39

Language: Statements (§8)

• Expression Statements
• Labeled Statements
• Compound Statements
• Conditional Statements
• Iterative Statements
• Switch Statements
• Break and Continue Statements
• Return Statements
• Goto Statements
• Null Statements

40

Expression Statements (§8.2)

• Treat an expression as a statement

• Discard the result of evaluating the expression

• Expression statements are used when the evaluation of the
expression causes one or more desired side effects

41

Labeled Statements (§8.3)

• A label may be affixed to any statement in order to allow control to be transferred to that statement via a
goto or switch statement.

• There are three kinds of labels:
• Named labels
• case label (see the Switch Statements (§8.7) slide below)
• default label (see the Switch Statements (§8.7) slide below)

• Example of a named label:

int main(void) {
…
if(erroneous_behavior) {

goto error_occurred;
}
…

error_occurred:
…

}

42

Compound Statements (§8.4)

• Where a single statement could appear, a brace-enclosed list of statements
may be used

• Example:

if(expr)
return;

if(expr2) {
a = 73;
b++;

}

43

Conditional Statements (§8.5)

• Allow control flow to be altered based on the value of an expression

• if(expression)
statement

• if(expression)
statement

else
statement

44

Iterative Statements (§8.6)

• Allow control flow to loop based on the value of an expression

• while(control-expression)
statement

• do
statement

while(control-expression);

• for(initial-clauseopt; control-expressionopt; iteration-expressionopt)
statement

45

Switch Statements (§8.7)

• Allow control flow to follow a multiway branch based on the value of an
expression

• switch(integral-expression)
switch-statement-body

• Within the switch-statement-body, case and default labels may appear
• case integral-constant-expression:
• default:

• case and default labels are bound to the innermost containing switch
statement

• Control flow will proceed directly through case and default labels
• A break statement is needed to cause a branch to the end of a switch statement

46

Break and Continue Statements (§8.8)

• Cause control flow to branch to a defined location
• break;
• continue;

• break and continue can appear within loops

• break can appear within a switch statement

• break causes control flow to be transferred just past the closest enclosing
loop or switch statement

• continue causes control flow to be transferred to the end of the body of
the closest enclosing loop (i.e., while, do, or for)
• From that point, any and all control-expression and loop iteration-expression are

reevaluated

47

Return Statements (§8.9)

• Cause the current procedure or function to return to the caller

• Returns a value, if specified by the declaration of the function

• return expressionopt;

48

Goto Statements (§8.10)

• Cause control to be transferred to the specified labeled statement

• goto named-label;

49

Functions (§9)

• Function Definitions

• Function Prototypes

• Formal Parameter Declarations

50

Parameter-Passing Conventions

• Call-by-value (C)

51

Function Prototype Declarations and Function
Definitions
• Parameter names are optional in function prototype declarations

(§9.2)
• It is better style to include the names to document the purpose of the

parameters

• Clearly, parameter names are required in function definitions

• Actual function arguments are converted, as if by assignment, to the
type of the formal parameters (see §9)

52

Array as a Formal Parameter

• If an array is declared as a formal parameter, the leftmost dimension
need not be specified and, if specified, it is ignored (see §4.5.3 &
§5.4.3)
• All other bounds are required for the compiler to properly subscript into the

array

• If an array is declared as a formal parameter, the top-level “array of T”
is rewritten to have type “pointer to T” (see §9.3) and that array
dimension (if it is specified) is ignored

53

Array as a Actual Argument

• As mentioned above, when a prototype declaration is present, actual
arguments are converted to the formal parameter type, as if by
assignment (§6.3.2), and if possible

• If an array is passed as an actual argument, the top-level “array of T”
is converted to have type “pointer to T” using the same rules as for
simple assignment (§7.9.1)

54

